Different levels of nitrogen and phosphorus with or absence of VAM fungal inoculum on rice (Oryza sativa L)

M.A. Kalam, M.B. Hossain, T. Sarmin, A.Z.M. Moslehuddin¹ and M.M.K. Khan

Soil Science Division, Bangladesh Institute of Nuclear Agriculture (BINA), ¹Department of Soil Science, Bangladesh

Agricultural University, Mymensingh

Abstract: Pot experiment was conducted at BINA headquarter, Mymensingh, Bangladesh to evaluate the response of different levels of nitrogen and phosphorus containing fertilizers with or without VAM fungal on rice. The treatment combinations were N_0P_0 , N_0P_{20} , N_0P_{40} , $N_{100}P_0$, $N_{100}P_{20}$, $N_{200}P_0$, $N_{200}P_{20}$ & $N_{200}P_{40}$ with or without VAM fungal inoculum. Experiment was laid out in a completely randomized design with four replications. Results on root and shoot dry weights were significantly affected by the treatments at different growth stages of plant. At 40 and 95 DAT, maximum shoot dry weight (9.75 and 24.33 g hill⁻¹) and root dry weight (2.95 and 3.23 g hill⁻¹) were observed in $N_{200}P_{40}$ + VAM fungal treatment. The minimum shoot and root dry weight was found in N_0P_{20} treatment. The maximum root infection (74.33%) was observed in $N_{200}P_0$ + VAM which was statistically similar to $N_{100}P_0$ + VAM and $N_{100}P_{20}$ + VAM. The highest plant height, number of tillers per hill, panicle length, filled grain per panicle and 1000 seed weight was obtained from $N_{200}P_{40}$ + VAM. Unfilled grain had negative and significant correlation with number of tiller, panicle length and filled grain of rice suggesting it lower number of unfilled grain helped to increase rice yield. Number of tiller per hill showed positive and significant correlation with grain yield of rice in $N_{200}P_{40}$ + VAM treatment. Maximum grain yield (4.45 t ha⁻¹) was observed in $N_{200}P_{40}$ + VAM which was statistically similar to $N_{200}P_{40}$ + VAM treatment. In conclusion, application of VAM inoculum may be stimulated growth and yield of rice as compared to uninoculated plant.

Key words: VAM. Mycorrhiza, rice, different levels of N and P, root infection, yield.

Introduction

Rice (Oryza sativa L) is the second most important cereal in the world after wheat and the principal crop in Asia, serving as food for about 50 per cent of the world's population (Sass and Cicerone, 2002). It is predicted that 50 to 60 per cent increase in rice production will be required to meet demand from population growth by 2025 (Zhang and Wang, 2005). Bangladesh, though ranks 4th in the world both in acreage and production of rice, but it ranks 39th in respect of yield. The average yield is quite low (3.44 t ha⁻¹) compared to other rice growing countries such as China, Korea, Japan and USA, where per hectare yield is 6.26, 6.23, 6.58 and 7.37 t ha⁻¹, respectively (FAO, 2003). Phosphorus deficiency is one of the most limiting factors in rice production and annualy large amounts of P fertilizers are being used in rice fields in the world (Itao et al., 1999). The available phosphorus status in most of the areas of Bangladesh soils is generally quite low due to it fixation. Application of phosphatic fertilizer is essential to obtain better yield of crops. Mycorrhiza is the mutualistic symbiosis (non-pathogenic association) between soilborne fungi with the roots of higher plants. Vesicular arbuscular mycorrhiza (VAM) have been shown to improve productivity in soils of low fertility and are particularly important for increasing the uptake of slowly diffusing ion such as PO³⁻₄ (Jacobsen et al., 1992). On the other hand, nitrogen fertilizer use efficiency is very low due to its leaching, volatilization and run off loss during crop production. Mycorrhizal fungi can also improve absorption of N from NH4⁺-N mineral fertilizers and transporting it to the host plant (Johansen et al., 1993). A few research works have been done on the crop species such as clover (Bi et al., 2003), sorghum (Bagayoko et al., 2000) and wheat (Hawkins and George, 1999), but there is little experimental evidences on the role of mycorrhizal colonization on rice growth (Purakayastha and Chhonkar, 2001; Gao et al., 2007). With this view, it is essential to determine the effect of different levels of nitrogen and phosphorus with and without VAM inoculum on root and shoot development at different growth stages, mycorrhizal

root infection, yield contributing parameters and yield of rice.

Materials and Methods

Pot experiment was conducted at BINA headquarter, Mymensingh to evaluate the response of different levels of nitrogen and phosphorus containing fertilizers with or without VAM fungal on vegetative growth at different stages, mycorrhizal root infection, yield contributing parameters and yield of rice. Initial soil samples were randomly collected, air dried and passed through a 2 mm sieve for analyzing some important physicochemical properties. The experimental soils were sandy loam in texture containing 0.46% organic carbon, 0.06% total nitrogen, 14 ppm available phosphorus, 0.13 ppm exchangeable potassium and a pH of 6.9 in H₂O. The treatment combinations were N₀P₀, N₀P₂₀, N₀P₄₀, N₁₀₀P₀, $N_{100}P_{20}$, $N_{100}P_{40}$, $N_{200}P_0$, $N_{200}P_{20}$ & $N_{200}P_{40}$ with or without VAM inoculum. Treatments were replicated thrice and arranged in a completely randomized design. Total number of pots (54) was used in this experiment. A ten kg soils was placed into $20 \times 15 \times 15$ cm earthen pot. Forty two kg K_2O ha⁻¹ as muriate of potash and 10 kg S ha⁻¹ as gypsum were applied as basal dose. According to treatments combination one third of nitrogen and full dose of phosphorus as urea and triple super phosphate were applied with basal dose of potassium and sulphur containing fertilizers, respectively. Three seedlings of Oryza sativa L (cv. BINAdhan 6) were grown in each pot. VAM spores were collected from rice, marigold, mungbean and peanut rhizosphere soils. This inoculum was covered with a soil layer of 2 cm in which rice seedlings were transplanted. The rest nitrogen as urea was applied in two splits at maximum vegetative phage and panicle initiation stage of rice. Cultural practice was done whenever necessary. At 40 and 95 DAT (days after transplanting), single plant was uprooted from the experimental pot. Root and shoot were separated with the help of a sharp scissors. Samples of shoot and root portions of plant at vegetative stages, grain and straw at maturity were sampled for dry weight estimation. For root infection study, fine roots were collected and washed with

water. The washed roots were cut into 1 cm segments and thoroughly mixed. This mixed sample was bleached with 10 per cent (w/v) KOH at 90^oC for 2 h and stained with trypan blue (Phillips and Hayman, 1970). The presence or absence of infection was calculated as follows:

Shoot and root dry weight of plant were measured at 40 and 95 DAT. Data on yield contributing parameters and grain yield of rice was computed on 14 per cent moisture basis. Data were statistically analyzed and Duncan's Multiple Range was applied to examine significant differences between the treatment means (Gomez and Gomez, 1984).

Results and Discussion

The application of VAM inoculum had a positive effect on growth dynamics of rice plant. Shoot and root dry weight results of rice at 40 and 95 DAT under different treatments are presented in Table 1. Data indicated that the amount of shoot dry weight varied from 5.00 to 9.75 and 15.00 to 24.33 g plant⁻¹ at 40 and 95 DAT and the VAM inoculum significantly increased the shoot dry weight of rice over control (N₀P₀). At 40 DAT, maximum shoot dry weight (9.75 g hill⁻¹) was observed in N₂₀₀P₄₀ + VAM treated plots which followed by N₂₀₀P₄₀ and N₂₀₀P₂₀ + VAM treatments. The lowest shoot dry weight was found in N₀P₀ treatment. At 95 DAT, the highest shoot dry weight (24.33 g hill⁻¹) was found in N₂₀₀P₄₀ + VAM treatment. The minimum shoot dry weight (5.67 g hill⁻¹) showed in N₀P₀

treatment. Shoot dry weight was higher in VAM treated plots than alone use of different levels of nitrogen and phosphorus treatments including control. Root dry weight ranged from 1.00 to 2.95 and 1.75 to 3.23 g plant⁻¹ at 40 and 95 DAT, respectively. At 40 DAT, maximum root dry weight (2.95 g hill⁻¹) was observed in $N_{200}P_{40}$ + VAM treated plots and followed by $N_{200}P_{20}$ and $N_{100}P_{40}$ + VAM treatments. The lowest root dry weight was found in N₀P₂₀ treatment. At 95 DAT, the highest root dry weight $(3.23 \text{ g hill}^{-1})$ was found in $N_{200}P_{40}$ + VAM which followed by $N_{100}P_{40}$ + VAM treated plots. The minimum root dry weight (1.75 g hill⁻¹) showed in N_0P_{20} . VAM with different doses of N and P treated plots performed better performance than without VAM treated nitrogen and phosphorus treated fertilizers. This may be due to the addition of VAM to all the different doses of N and P and it might have had favorable effect on phosphorus solubilization as well as effective use of nitrogenous fertilizers. Similar promoter effects of VAM on the shoot and root system, of the plants have been reported by several authors (Lionin and Medina, 2002; Fernandez et al., 1999). Beneficial effects of VAM on plant growth were observed after the establishment of the symbiont. This response could be close related to the mycorrhizal effectiveness as the symbiosis process involves fluxes of photosynthates to the root system. Results also reported by Debouba et al. (2006) showed a greater shoot and root dry matter in tomato plants preinoculated with AMF irrigated with both saline and nonsaline water. Similar shoot and root weight increases were reported in cotton (Tian et al., 2004) and soybean (Sharifi et al., 2007).

Table 1. Effect of different doses of N and P containing fertilizers with presence or absence of VAM on rice

Treatment -	Shoot dry weight (g hill ⁻¹)		Root dry we	$\mathbf{D}_{\mathbf{r}} = t \cdot \mathbf{r} \mathbf{f}_{\mathbf{r}} = t \cdot \mathbf{r} \mathbf{r} \left(0/2 \right)$	
	40 DAT	95 DAT	40 DAT	95 DAT	 Root infection (%)
N ₀ P ₀	5.00	15.00	1.33	1.80	26.33
N_0P_{20}	5.33	15.33	1.00	1.75	33.00
N_0P_{40}	6.33	16.00	1.40	1.85	29.67
$N_{100}P_0$	6.33	16.33	1.60	2.13	55.00
$N_{100}P_{20}$	8.80	22.67	1.77	2.82	46.33
$N_{100}P_{40}$	8.67	22.33	1.80	2.89	38.00
$N_{200}P_0$	7.67	19.00	1.55	2.56	57.33
$N_{200}P_{20}$	9.00	22.67	1.85	2.90	45.00
$N_{200}P_{40}$	9.67	23.00	1.90	2.95	39.00
$N_0P_0 + VAM$	5.67	15.67	1.56	1.95	55.00
$N_0P_{20} + VAM$	6.00	16.00	1.75	1.87	56.00
$N_0P_{40} + VAM$	6.67	17.00	1.85	1.90	46.33
$N_{100}P_0 + VAM$	6.50	21.33	2.13	2.33	72.00
$N_{100}P_{20} + VAM$	9.60	24.20	2.82	2.95	68.00
$N_{100}P_{40} + VAM$	9.13	24.00	2.89	3.00	52.00
$N_{200}P_0 + VAM$	8.20	19.67	2.56	2.65	74.00
$N_{200}P_{20} + VAM$	9.65	23.00	2.90	2.98	66.00
$N_{200}P_{40} + VAM$	9.75	24.33	2.95	3.23	56.00
LSD _{0.05}	0.27	0.97	1.69	0.97	3.72

Root infection by VAM was observed significantly difference among the treatments (Table 1). Root infection results ranged from 26.33 to 74.33 per cent in N_0P_0 and $N_{200}P_0$ treatments. The maximum root infection (74.33%) was observed in $N_{200}P_0$ + VAM which was statistically similar to $N_{100}P_0$ + VAM and $N_{100}P_{20}$ + VAM treatments. The minimum root infection (26.33%) was found in N_0P_0

treatment. Root infection was higher in VAM treated plots than without VAM treated plots. These results also indicate that VAM had positive effect on per cent root infection. The results of these studies allow us to infer that higher dose of nitrogen fertilizer without or less amount of phosphatic fertilizer with VAM is helpful in augmenting the higher root infection of rice. Similar findings have be

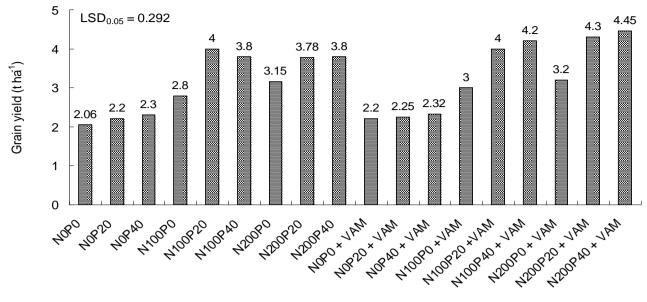
been reported by Olalde et al. (1994).

Table 2. Effect of different	doses of N and	P containing fertil	lizers with presence or	absence of VAM on rice

т., <u>,</u>	Plant height	No. of tillers	Panicle length	Filled grain	Unfilled grain	1000 seed wt.
Treatment	(cm)	hill ⁻¹	(cm)	panicle ⁻¹	panicle ⁻¹	(g)
N_0P_0	81.00	4.33	16.00	68.33	55.33	19.75
N_0P_{20}	83.67	5.00	16.10	75.20	43.00	20.00
N_0P_{40}	84.67	6.33	16.50	85.33	40.00	20.22
$N_{100}P_0$	96.33	7.67	17.33	95.22	33.67	20.13
$N_{100}P_{20}$	97.67	12.00	20.20	108.00	22.33	21.17
$N_{100}P_{40}$	99.67	11.00	21.00	112.33	18.67	21.70
$N_{200}P_0$	101.00	11.00	20.00	110.22	33.67	21.00
$N_{200}P_{20}$	101.50	12.33	21.33	115.00	22.33	22.10
$N_{200}P_{40}$	103.00	12.67	21.40	121.33	18.33	22.39
$N_0P_0 + VAM$	84.33	6.50	17.20	88.67	53.67	19.82
$N_0P_{20} + VAM$	85.00	6.33	17.90	118.00	39.00	20.10
$N_0P_{40} + VAM$	85.67	8.00	18.20	155.00	36.33	20.45
$N_{100}P_0 + VAM$	90.00	9.00	21.00	165.25	31.67	20.30
$N_{100}P_{20} + VAM$	102.67	13.33	21.50	170.33	18.67	21.50
$N_{100}P_{40} + VAM$	102.67	13.00	20.80	175.00	14.33	22.32
$N_{200}P_0 + VAM$	102.00	12.00	21.22	165.33	28.67	21.50
$N_{200}P_{20} + VAM$	103.33	13.33	22.00	170.00	19.33	24.45
$N_{200}P_{40} + VAM$	105.00	13.67	22.66	180.00	16.00	24.55
LSD _{0.05}	6.05	1.94	3.67	6.40	4.36	2.32

Results on yield contributing parameters are presented (Table 2). Plant height, number of tillers per hill, panicle length, filled grain per panicle and 1000 seed weight ranged from 81.00 to 105.00 cm, 4.33 to 13.67, 16.00 to 22.66 cm, 68.33 to 180.00, 19.75 to 24.55 were found in N_0P_0 and $N_{200}P_{40}$ + VAM, respectively. Higher dose of nitrogen performed better results than lower dose of nitrogen. Different levels of nitrogen and phosphorus in combination with VAM showed higher results than different levels of nitrogen and phosphorus without VAM treatments. These research findings are in conformity of

the other researcher's results (Johansen *et al.*, 1993; Jacobsen *et al.*, 1992). The highest plant height, number of tillers per hill, panicle length, filled grain per panicle and 1000 seed weight was observed in $N_{200}P_{40}$ + VAM. On the other hand, maximum unfilled grain was found in N_0P_0 treatment. Highest plant height result was statistically similar to $N_{200}P_{20}$ + VAM, $N_{200}P_0$ + VAM and $N_{100}P_{20}$ + VAM treatments. Maximum panicle length and 1000 seed weight results were statistically similar to $N_{200}P_{20}$ treatment.


Table 3. Correlation coefficient among grain yield and yield contributing parameters of rice

Parameters	Grain vield	Plant height	No. of tiller	Panicle length	Filled grain	Unfilled grain	1000 seed weight
Grain yield	-	0.202 ^{NS}	0.953**	0.894**	0.643**	-0.938**	0.869**
Plant height		-	0.191 ^{NS}	0.145^{NS}	0.320^{*}	-0.201 ^{NS}	0.183 ^{NS}
No. of tiller			-	0.949^{**}	0.725^{**}	-0.922**	0.831**
Panicle length				-	0.770^{**}	-0.879^{**}	0.781
Filled grain					-	-0.688^{**}	0.653
Unfilled grain						-	-0.792
1000 seed weight							-

n=54; *, **-indicated significant at 5 and 1% level of significance; NS-nonsignificant.

Grain yield was significantly increased with the increasing levels of N and P in presence of VAM (Fig. 1). Grain yield varied from 2.06 to 4.45 t ha⁻¹. Maximum grain yield (4.45 t ha⁻¹) was observed in $N_{200}P_{40}$ + VAM which was statistically identical to $N_{200}P_{20}$ + VAM treatment. Minimum grain yield was found in N_0P_0 treatment. Highest grain yield was observed in $N_{200}P_{40}$ + VAM compared to other treatments which might be due to the highest production of effective tillers hill⁻¹, increased number of grain panicle⁻¹ and 1000 grain yield (data not shown). The significant effects of VAM inoculum on rice was also observed by many researchers (Tu *et al.*, 2006; Amani and Rao, 1996). The performance of VAM was not

showed significant result in $N_{100}P_{20}$ treatment. An increase in yield in the VAM treatment was noteworthy, as a clear sign of the efficiency of this type of fungal inoculum on the plant productivity. The correlation coefficients of yield contributing parameters were worked out (Table 3) in order to evaluate their influence on rice yield. Unfilled grain had negative and significant correlation with number of tiller, panicle length and filled grain suggesting it lower number of unfilled grain was helped to increase rice yield. Number of tiller per hill showed positive and significant correlation with grain yield to indicate that increasing number of tiller per hill increased grain yield of rice.

Treatment

Fig. 1. Effect of different doses of N and P containing fertilizers in presence or absence of VAM on rice yield

It is clear from the results of different doses of N and P levels with VAM inoculum responded well in respect of root and shoots dry weight, root infection, yield contributing parameters and grain yield of rice.

References

- Amani, K. and Rao, A.S. 1996. Effect of two arbuscular mycorrhizal fungi *Acaulospora spinosa* and *A. scrobiculata* on upland rice varieties. Microbiological Research 151:235-237.
- Debouba, M., Gouia, H., Suzuki, A. and Ghorbel, M.H. 2006. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "*Lycopersicon esculentum*" seedlings. J. Plant Physiol. 163:1247-1258.
- Fernandez, F. 1999. Managing arbuscular mycorrhizal association on the production of coffee seedlings (*C. Arabica* L var. Catuai) in some soil types. [Thesis PhD], INCA. p.128.
- Itao, E., Ella, E. and Kawanto, N. 1999. Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crops Research 64: 75-90.
- FAO (Food and Agriculture Organization). 2003. Production Yearbook. Food and Agriculture Organization of the United Nations, Rome. pp: 76-77.
- Gao, X., Kuyper, T. W., Zou, C., Zhang, F. and Hoffland, E. 2007. Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil 290: 283-291.
- Bi, Y.L., Li, X.L. and Christie, P. 2003. Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low phosphorus soil amended with zinc and phosphorus. Chemosphere 50: 831-837.
- Bagayoko, M., George, E., Romheld, V. and Buerkert, A. 2000. Effects of mycorrizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J. Agricultural Science 135: 399-407.
- Gomez, K.A. and Gomez, A.A. 1984. Statistical procedures for agricultural research, 2nd edn., Johm Wiley and Sons, Singapore, p.98.

- Hawkins, H.J. and George, E. 1999. Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiologia Plantarum 105: 694-700.
- Jacobsen, I., Abbott, L.K. and Robson, A. 1992. External hyphae of vesicular arbuscular mycorrhizal fungi associated with *Trifolium subterraneum* L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120:371-380.
- Johansen, A., Jakobsen, I. and Jessen, E.S. 1993. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with *Trifolium subterraneum* L. 3. Hyphal transport of ³²P and 15N. New Phytol. 135:575-585.
- Lionin, D. and Medina, N. 2002. Mineral nutrition with N, P and K in the symbiotic mycorrhizal fungi, tomato (*Lycopersicon esculentum* Mill) in Ferralsol. Trop. Crops 23:83-88.
- Olalde, P.V., Frias, H.J., Ayuilera, G.L.T., Alvaraolo, B. and Maria, J. 1994. Effect of VA mycorrhiza in the bean nitrogen fixation with different phosphorus level. TERRA, Mexico 12(3):323-328.
- Phillips, D.M. and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55:158-161.
- Purakayastha, T.J. and Chhonkar, P.K. 2001. Influence of vesicular –arbuscular mycorrhizal fungi (*Glomus etunicatum* L) on mobilization of Zn in wet land rice (Oryza sativa L). Biology and Fertility of Soils 33: 323-327.
- Sass, R.L. and Cicerone, R.J. 2002. Photosynthate allocations in rice plants: Food production or atmospheric methane. PNAS 99:11993-11995.
- Sharifi, M., Ghorbanli, M. and Ebrahimzadeh, M. 2007. Improved growth of salinity stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J. Plant Physiol. 164:1144-1151.
- Tian, C., Feng, G., Li, X.L. and Zhang, F.S. 2004. Different effect of arbuscular mycorrhizal fungal isolates from saline or nonsaline soil on salinity tolerance of plants. Appl. Soil Ecol. 26:143-148.
- Tu, S.H., Goh, T.B. and Banerjee, M.R. 2006. Vesicular arbuscular mycorrhizae-mediated uptake and translocation of P and Zn by wheat in calcareous soi. Pedosphere 7:317-324.
- Zhang, Q. and Wang, G. 2005. Studies on nutrient uptake of rice and characteristics of soil microorganisms in a long-term

fertilization experiments for irrigated rice. J. Zhejiang Uni. Sci. 68:147-154.